
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-19378 C

LAMMPS ReaxFF Benchmark Deep Dive

Stan Moore
February 24, 2018

LAMMPS ReaxFF Benchmark

§ Models the reaction of crystalline Hexanitrostilbene (HNS)
energetic material at the atomic scale

§ Uses the reactive forcefield (ReaxFF) in LAMMPS

2

LAMMPS ReaxFF Code

§ The ReaxFF code has two main parts
1. Computationally expensive ReaxFF potential, which consists of

several deeply nested loops that compute the forces, energy,
and pressure of chemically reacting systems

2. Dynamic charge equilibration (QEq) that computes variable
charges on atoms by solving a sparse matrix equation

3

Kokkos Library

§ Kokkos is a templated C++ library that provides
abstractions to allow a single implementation of an
application kernel (e.g. a pair style) to run efficiently on
different kinds of hardware such as GPUs

§ Kokkos maps the C++ kernel onto different backend
languages such as CUDA

§ Also provides data abstractions to adjust (at compile time)
the memory layout of data structures to optimize
performance on different hardware

§ For more information on Kokkos, see
https://github.com/kokkos

4

LAMMPS KOKKOS Package

§ The LAMMPS KOKKOS package contains versions of pair,
fix, and atom styles that use data structures and macros
provided by the Kokkos library, which is included with
LAMMPS in /lib/kokkos

§ Currently only supports double precision, no mixed or
single precision (on to-do list)

5

Compiling LAMMPS

§ To compile the Kokkos CUDA version (uses
src/MAKE/OPTIONS/Makefile.kokkos_cuda_mpi):
§ cd src
§ make yes-user-reaxc
§ make yes-kokkos
§ make -j kokkos_cuda_mpi
KOKKOS_ARCH=Power8,Pascal60

§ For more information on building and running with the
LAMMPS KOKKOS package, see
http://lammps.sandia.gov/doc/accelerate_kokkos.html

6

http://lammps.sandia.gov/doc/accelerate_kokkos.html

Running the Benchmark

§ The command "-v x 1 -v 1 -v z 1" sets the x, y, and z
dimensions of the benchmark. To double the benchmark
size (i.e. number of atoms), double the dimension with the
lowest value, i.e. use "-v x 2 -v y 1 -v z 1".

§ To run on 4 P100 GPUs using Kokkos CUDA:
§ cd reax_benchmark
§ mpiexec -np 4 --bind-to core

../src/lmp_kokkos_cuda_mpi -k on g 4 -sf kk -pk
kokkos neigh half neigh/qeq full newton on -v x 16
-v y 8 -v z 12 -in in.reaxc.hns -nocite

§ Must use “neigh/qeq full newton” to get good
performance. See
http://lammps.sandia.gov/doc/package.html

7

http://lammps.sandia.gov/doc/package.html

P100 Performance

§ Single P100 GPU is 17.6x faster than a single BG/Q node
for 116K atoms

§ Performance highly dependent on problem size

8

better

P100 Performance

9

P100
Profiling application: ../src/lmp_ride100_kokkos_cuda -k on g 1 -sf kk -pk kokkos neigh half neigh/qeq full newton on -v
x 8 -v y 8 -v z 8 -v t 100 -in in.reaxc.hns.kokkos_cuda.steps -nocite
Time(%) Time Calls Avg Min Max Name
33.82% 7.55197s 202 37.386ms 3.8966ms 71.156ms FixQEqReaxKokkos::ComputeHFunctor
16.62% 3.71133s 2272 1.6335ms 1.6259ms 1.6457ms FixQEqReaxKokkos::SparseMatvec
16.46% 3.67528s 99 37.124ms 36.320ms 37.982ms PairReaxKokkos::ComputeLJCoulomb
7.28% 1.62674s 186 8.7459ms 1.1944ms 13.837ms PairReaxKokkos::BuildListsHalf_LessAtomics
7.21% 1.60983s 99 16.261ms 16.147ms 16.429ms PairReaxKokkos::ComputeTorsion
4.48% 1.00047s 99 10.106ms 9.9881ms 10.252ms PairReaxKokkos::ComputeAngular
1.88% 419.04ms 7 59.862ms 18.251ms 66.957ms NPairKokkos::BuildFunctorGhost
1.76% 393.23ms 99 3.9720ms 3.9358ms 4.0529ms PairReaxKokkos::ComputeBond2
1.29% 287.65ms 3469 82.919us 640ns 520.84us [CUDA memcpy DtoH]
1.27% 282.58ms 47359 5.9660us 704ns 466.63us [CUDA memcpy HtoD]

§ ComputeHFuntor is part of the charge equilibration, which
solves sparse matvec

§ Uses parallel scan to generate a CRS graph of a shortened
neighbor list

§ Only called after neighboring (once every 10 timesteps)

Notes

§ Doing host ßà device data transfer by hand, NOT using
UVM

§ Only using flat parallelism, not using hierarchal parallelism,
thread teams, or shared memory

§ May be able to use a different algorithm for sparse matvec
(requires constraint that charges sum to zero)

10

